Arduino Nano 33 IOT

Please inform me as soon as the product is available again.
Please enter these characters in the following text field.
₹2,029.00 *

Prices incl. VAT plus shipping costs

Out of Stock

  • Arduino-ABX00027
  • ABX00027
The Arduino Nano 33 IoT is the easiest and cheapest point of entry to enhance existing devices... more
Product information "Arduino Nano 33 IOT"

The Arduino Nano 33 IoT is the easiest and cheapest point of entry to enhance existing devices (and creating new ones) to be part of the IoT and designing pico-network applications. Whether you are looking at building a sensor network connected to your office or home router, or if you want to create a BLE device sending data to a cellphone, the Nano 33 IoT is your one-stop-solution for many of the basic IoT application scenarios. 

The board's main processor is a low power Arm® Cortex®-M0 32-bit SAMD21. The WiFi and Bluetooth® connectivity is performed with a module from u-blox, the NINA-W10, a low power chipset operating in the 2.4GHz range. On top of those, secure communication is ensured through the Microchip® ECC608 crypto chip. Besides that, you can find a 6 axis IMU, what makes this board perfect for simple vibration alarm systems, pedometers, relative positioning of robots, etc. 

WiFi and Arduino IoT Cloud 

At Arduino we have made connecting to a WiFi network as easy as getting an LED to blink. You can get your board to connect to any kind of existing WiFi network, or use it to create your own Arduino Access Point. The specific set of examples we provide for the Nano 33 IoT can be consulted at the WiFiNINA library reference page

It is also possible to connect your board to different Cloud services, Arduino's own among others. Here some examples on how to get the Arduino boards to connect to:

  • Arduino's own IoT Cloud: Arduino's IoT Cloud is a simple and fast way to ensure secure communication for all of your connected Things. Check it out here
  • Blynk: a simple project from our community connecting to Blynk to operate your board from a phone with little code
  • IFTTT: see an in-depth case of building a smart plug connected to IFTTT
  • AWS IoT Core: we made this example on how to connect to Amazon Web Services
  • Azure: visit this github repository explaining how to connect a temperature sensor to Azure's Cloud
  • Firebase: you want to connect to Google's Firebase, this Arduino library will show you how 

Note: while most of the above-shown examples are running on the MKR WiFi 1010, both boards have the same processor and wireless chipset, which means it will be possible to replicate them with the Nano 33 IoT. 

Bluetooth® and BLE

The communications chipset on the Nano 33 IoT can be both a BLE and Bluetooth® client and host device. Something pretty unique in the world of microcontroller platforms. If you want to see how easy it is to create a Bluetooth® central or a peripheral device, explore the examples at our ArduinoBLE library.

The Arduino Nano 33 IoT is based on the SAMD21 microcontroller.

Microcontroller SAMD21 Cortex®-M0+ 32bit low power ARM MCU (datasheet)
Radio module u-blox NINA-W102 (datasheet)
Secure Element ATECC608A (datasheet)
Operating Voltage 3.3V
Input Voltage (limit) 21V
DC Current per I/O Pin 7 mA
Clock Speed 48MHz
CPU Flash Memory 256KB
SRAM 32KB
EEPROM none
Digital Input / Output Pins 14
PWM Pins 11 (2, 3, 5, 6, 9, 10, 11, 12, 16 / A2, 17 / A3, 19 / A5)
UART 1
SPI 1
I2C 1
Analog Input Pins 8 (ADC 8/10/12 bit)
Analog Output Pins 1 (DAC 10 bit)
External Interrupts All digital pins (all analog pins can also be used as interrput pins, but will have duplicated interrupt numbers)
LED_BUILTIN 13
USB Native in the SAMD21 Processor
IMU LSM6DS3 (datasheet)
Length 45 mm
Width 18 mm
Weight 5 gr (with headers)

Pinout Diagram

 

Download the full pinout diagram as PDF here.

Download the Fritzing part here.

Programming and Debugging Port 

On the bottom side of the board, under the communication module, debug signals are arranged as 3x2 test pads with 100 mil pitch. Pin 1 is the bottom left one with the USB connector on the left and the test pads on the right. Check the downloadable pinout diagram for the exact configuration. 

Availability of the Nina Module Pins 

Some of the NINA W102 pins are connected to the 15+15 pins headers/pads and can be directly driven by the module's ESP32; in this case it is necessary that the SAMD21 corresponding pins are aptly tri-stated. Below is a list of such signals:

SAMD21 Pin SAMD21 Acronym NINA Pin NINA Acronym Header Description
48 PB03 8 GPIO21 A7
14 PA09 5 GPIO32 A6
8 PB09 31 GPIO33 A5 / SCL
7 PB08 35 GPIO5 / GPIO19 A4 / SDA
Related links to "Arduino Nano 33 IOT"
Read, write and discuss reviews... more
Customer evaluation for "Arduino Nano 33 IOT"
Write an evaluation
Evaluations will be activated after verification.
Please enter these characters in the following text field.

The fields marked with * are required.

Viewed